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Abstract. When the motion of an object is influenced by gravity (eg free fall, pendulum, wave
motion), that influence may provide a cue to computing the absolute distance and/or size of the
object. Formal analysis supports the claim that the distance and size of moving objects are
generally computable with reference to the gravitational component of motion. Informal
evidence from judgments of realism in films is consistent with this gravity-cue hypothesis.

1 Introduction

Most visual cues about the three-dimensional layout of the environment can only
specify relative depth and relative size. Even the two most precise depth cues—
binocular disparity and motion parallax (Lee 1974; Rogers and Graham 1982)—only
provide distance information to within a scale factor. We need to judge absolute
distance and size, however, in order to act in space. Take, for example, the act of
catching a ball. For a perceiver to place his or her hands in the appropriate spatial
position to intercept a ball and in an appropriate conformation to grasp it, he or she
needs to know the absolute distance and size of the ball. If the ball is coming straight
toward the eye, the expansion pattern of the ball on the retina will give the time-to-
contact (Lee 1974). But in the more general case in which the ball is not heading
toward the eye, the expansion pattern does not specify how far from the eye the ball
is going to pass: it could be a distant large ball moving quickly or a near small ball
moving slowly. Yet, the act of catching a ball is performed reliably by most people
even under monocular viewing conditions (von Hofsten 1990).

Two well-known depth cues can specify absolute distance under the right circum-
stances: convergence and familiar size. Berkeley (1709) was the first to show that if
interocular distance is known and the angle between the lines of sight of the two eyes
is known, then the absolute distance to the point of convergence can in principle be
derived. He argued that convergence was the basis for absolute distance perception.
The usefulness of convergence as an absolute depth cue has been debated (eg
Woodworth and Schlosberg 1954), but von Hofsten (1990) has shown that conver-
gence can provide a precise scale for depth in near space. However, convergence is
not an effective cue for objects at any appreciable distance and cannot account for
performance under monocular viewing (von Hofsten 1990; Lie 1965).

In a monocular situation, the depth cue of familiar size could conceivably be used
to calibrate space because if the true size and the retinal image size of an object are
known, one can in principle estimate the absolute distance to the object.The depth
perception of adults (Ittelson 1951) and infants (Yonas et al 1982) is influenced by
familiar size. There is, however, a major problem with reliance on familiar size as the
sole basis for absolute distance judgments. Many familiar shapes, such as spheres, or
even people, come in a variety of sizes. Consequently, familiar size is unlikely to be a
reliable source of information for guiding precise motor activity.
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2 The gravity-cue hypothesis

We hypothesize that the motions of objects that are affected by gravity (eg projectile
flight, pendulum motion, fluid wave motion) will supply important information about
absolute distance and absolute size. In support of this hypothesis, we provide a
quantitative argument that states that knowing the gravitational constant, which
directly affects the trajectory and speed of projectile motion, allows one, in principle,
to estimate the absolute distance to any object in free flight. Saxberg (1987a) has also
evaluated this hypothesis and shown quantitatively that there is enough information in
the trajectory and speed of projectile motion to estimate absolute distance. Later we
consider the differences between his quantitative analysis and ours.

Consider the simplest case. A sphere is suspended in space. The retinal image in
an observer’s eye occupies 5 deg. The classic problem of estimating size and distance
in this static scene results from the fact that there are infinite combinations of
objective size and distance that can project a 5 deg image on the retina.

Consider a slightly more complex scene. The object moves laterally at some speed.
If one does not known the objective speed, then the size and distance (and speed)
remain ambiguous because there are infinite combinations of objective distance and
speed that can produce a given rate of image movement on the retina.

Now imagine that the object’s suspension is removed. If the observer perceives the
motion and assumes it is governed by gravity, ambiguity can be resolved. In the
simplest case of vertical fall, the first 0.25 s results in 1 ft of objective movement (ie
descent = 16¢2). That fact can specify the size of the object. If the object falls a fifth
of its diameter in the first 0.25 s of descent, it must have a diameter of 5 ft. Optical
geometry would then allow the observer to resolve the distance to the object as being
57 ft[ie distance = descent/tan (deg subtended by descent), 57 = 1/tan(1 deg)].

Consider now the more complex and more common case of projectile motion
involving components of motion laterally, vertically, and in depth. We will begin by
showing that an analysis of the optic flow field, without regard to the action of
gravity, cannot provide absolute distance information. Consider a stationary observer
viewing an object moving on a linear path in an otherwise rigid scene. As shown
in figure 1, we use a rectilinear coordinate system centered at the observer’s eye.
The Yaxis is parallel to the gravitational vector. The object has the coordinates
(X, Y, Z). The retina is represented by a two-dimensional plane, one unit behind the
origin. The projection of the object has the retinal image coordinates (x, y), where
x = X/Z and y = Y/Z. The motion of the object is represented by three orthogonal
vectors: V,, ¥, and V, for motions parallel to the X, Y, and Z axes, respectively.

From analyses of the optic flow field (Crowell et al 1989; Longuet-Higgins and
Prazdny 1980):
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where ¢ is time, (x., y.) are the retinal image coordinates of the so-called focus of
expansion (the point from which the flow vectors streaming off the object seem to
diverge or converge; see Longuet-Higgins and Prazdny 1980); v, and v, are the
retinal image velocities, and a, and a, are the retinal accelerations in the directions x
and y, respectively; V,, ¥, and V, are the real world velocities; and X, Y, and Z,
are the coordinates of the initial position of the object. Equations (7) and (8) show
that one can estimate the relative distance (Z/V,) from retinal image properties.
Without knowing the approach velocity, V,, however, the absolute distance Z cannot
be estimated from these equations. Examination of the other equations reveals that
there are generally six unknown object properties (X, Y, Z, V,, ¥, and V,). With six
equations [eg equations (1)-(4), (7), and (8)], one might expect to be able to solve for
the six unknowns and thereby estimate the absolute distance of the object. The equa-
tions are, however, not independent and do not allow a solution for Z. Thus, as
pointed out by Gibson etal (1955), Lee (1974), and Longuet-Higgins and Prazdny
(1980), the optic flow field can provide estimates of relative but not absolute distance
to objects moving at constant velocity.

The motion of objects, however, is frequently influenced by the action of gravity
(as in projectile, hinged, or wave motion). In the case of projectile motion, the absolute
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Figure 1. Coordinate system for a stationary observer and a moving object. The observer is
represented by the three-dimensional coordinate system XYZ. The direction Y is parallel to
gravity. The origin of this coordinate system is the center of the optics of the eye. The retina is
represented by a plane, 1 unit behind the origin. The object has the coordinates (X, Y, Z) and
moves in three directions with velocities represented by the vectors V,, v, and V,. The projec-
tion of the object onto the retina has the coordinates (x, y). Throughout this paper we use the
convention that variables external to the observer are uppercase letters and variables internal to
the observer (that is, retinal variables) are lowercase letters.
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distance of an object can be found if the observer knows the gravitational constant
and the direction of the gravitational vector. We disregard the effects of air friction (a
notable exclusion, yet of diminishing importance for heavier objects and any object
near apex), so the motion of the object is governed by its initial velocities, V;, V,,
and V,, and gravity only. Inclusion of the effects of gravity affects equations (1),
(4), and (6) which become:
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where g is the acceleration due to gravity. There are different ways to solve for Z.
One solution involves equations (8)-(11), the equations for the Y component of
motion. Using equations (8)-(10) to substitute for V,, V,, and y, and collecting terms,
the following relationship is derived:

z- 807y (12)
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In principle then, an observer can deduce the absolute distance to an object by
measuring four retinal image properties in the direction corresponding to the gravita-
tional vector: acceleration, velocity, position of the projected object, and the vertical
position of the focus of expansion.

As mentioned earlier, Saxberg (1987a) has presented a similar quantitative analysis.
Illustrating it here with our symbols and coordinates, he showed that one can
compute the distance Z from the second derivatives of x and y [equations (5) and (6)
above]. He obtains the following:

Z, = 8(2v. +a.t) (13)
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Saxberg’s equation is different from ours in two respects. First, it contains terms for
both vertical and horizontal motion in the retinal image plane, whereas our equa-
tion (12) contains terms for vertical motion only. Second, Saxberg’s equation contains
velocity, acceleration, time, and the gravitational constant, whereas ours also contains
a term for the vertical position of the focus of expansion.

Chapman (1968) and Todd (1981) have also examined the information contained
in the trajectory of a freely falling object. They have shown that the image velocity,
v,, is constant (that is, @, = 0) for an object on a trajectory that will ultimately hit the
observer’s eye. When v, increases over time (a, > 0), the object will pass over
the observer’s head, and when v, decreases over time (a, < 0), the object will fall
short. As in Saxberg’s analysis, the observer has to estimate image acceleration in
order to use this information.

A human observer’s ability to judge acceleration is rather limited (Gottsdanker
etal 1961; Schmerler 1976), so judgments of absolute distance and size from
measurements like equations (12) and (13) may be crude. We found a solution for
computing absolute distance and size, however, that does not require the measure-
ment of retinal image acceleration. An observer is frequently able to see the apex of
the flight of an object. In such cases, the solution is simpler because the initial
velocity, V,, of the object is zero at the apex, so the future velocity is simply gr.
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Taking advantage of this observation, one can show that
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The solution here requires the measurement of only three retinal image properties:
velocity, position, and the focus of expansion. In other words, one does not need to
measure acceleration in the retinal image if the apex of the flight of the object is
visible.

Equations (12), (13), and (14) show that one can in principle estimate absolute
distance if the direction and accelerative effects of gravity are known. Both solutions
involve measuring three or four different retinal image properties at an instant in
time. Presumably other solutions are possible involving position or velocity measure-
ments at different times, but we have not examined these.

Our analysis assumes that the observer knows the direction of gravity with respect
to the line of sight. It seems reasonable that one could determine this angle from (i) a
variety of environmental cues such as the apparent slant and tilt (in the retinal image)
of environmentally vertical structures like walls, buildings, and trees, and (ii) vestib-
ular and proprioceptive information that specifies gaze angle with respect to the
vertical. The classic ‘rod and frame’ studies of Witkin and his colleagues illustrate the
sensitivity of humans to both forms of cues in estimating vertical alignment of a
stationary object (Witkin etal 1962). That work indicates that one might uncover
interesting individual differences in the effective use of the gravity cue to depth
and/or size. ,

Saxberg’s (1987a) and the present analysis show that observers could judge the
absolute distance and size of objects if they knew the accelerative effects of gravity
(whether that is acceleration per se or distance expectancies for time from apogee).
Saxberg (1987b) tested this proposition experimentally. He presented computer
displays of balls propelled from below with different initial velocities. Observers were
asked to move a mouse-driven plate on the computer screen to ‘catch’ the ball
when it landed. Saxberg reported that observers were reasonably accurate when the
ball provided information about both the trajectory and the changing retinal size.
However, when the size of the ball was held constant on the screen, performance
suffered significantly. From this, he concluded that human observers are not sensitive
to the distance information contained in the dynamics of free fall.

As we see it, Saxberg’s conclusion is not well-justified. There are at least three
points of concern. First, the absolute distance of the catching plate was not specified,;
its distance was specified only by its position on a texture gradient and by the
perspective changes in the shape of the plate as its distance was altered. These are
relative depth cues. It is possible, however, that the observers were able to learn
through practice the relationship between the position of the plate on the texture
gradient and the specified absolute distance. Second, the observers viewed the
displays binocularly, so they received information that the stimuli were all in the same
depth plane. It is well known that binocular depth information can override or at
least influence the interpretation of monocular depth cues. Third, and most impor-
tant, Saxberg did not present a condition in which the use of information from free
fall dynamics was presented in isolation. His conclusion was based on the decline in
performance when the changing-size cue was removed but trajectory information was
retained. Consider, however, the information the observer is provided with in the
fixed-size condition. The trajectory information specifies appropriate changes in
depth, but retinal size information specifies that no depth change has occurred. If
observers are sensitive to changing retinal size information and trajectory information,
this situation puts the two cues in conflict. In this situation, then, all that one can
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learn is whether observers are sensitive enough to trajectory information for this to
override retinal size information.

Thus, in our view, Saxberg’s (1987b) data do not provide persuasive evidence that
human observers are insensitive to the absolute distance and the absolute size
information contained in the dynamics of free fall. There is some indirect but
persuasive evidence that observers in fact use such information. Cinematographers
have long been aware of the problem of making miniature objects appear full-size
when filmed. The problem arises when the miniature objects are set into motion.
When a monster wrecks a skyscraper, the vertical acceleration (a,) across the film
plane of the camera of the chunks of falling concrete is given by equation (11). For
simplicity, we assume that V,, V], and V, are initially zero (corresponding to an object
that falls directly downward from the apex of its flight or its initial resting position).
Then
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From these relationships, an observer can estimate Z, and perceive the small scale
of the model. However, if the film speed is slowed down during projection, accelera-
tion across the retina would signify a longer distance to the object and thus a larger
object. How much should one slow the film speed? If a model is meant to give the
impression of an object M times larger than its actual size and, of course, M times
further away than its actual distance, then equation (15) suggests that one should
create the impression that ¢ has increased by a factor of M. That is to say, a model
scaled down by a ratio 1:16 should be filmed at four times the normal speed. When
the film is later projected at normal speed, it should give the intended impression of
an object sixteen times larger than the model. Examination of the cinematography
literature on special effects (eg Culhane 1981; Spottiswoode 1969) shows that this is
exactly the rule-of-thumb that is used for projectiles and floating objects. At least one
technical discussion relates the rule to ‘gravity-fed motion’.

Mobile miniatures are particularly difficult to work with owing to time-scale differences
which exist between the model and the full-size original. If a moving miniature is to
appear realistic, its speed must be decreased in proportion to its reduced scale, because
all linear dimensions appear to be magnified as the square of the magnification of time. In
the case of gravity-fed components, this reduction is achieved by over cranking the
camera an appropriate amount. The formula employed here is (D/d)"? = f, where D is
the distance or dimension in feet for the real object, d is the distance or dimension in feet
for the miniature (this fraction being simply the reciprocal of the scale of the model) and f
is the factor by which the operating speed of the camera is increased. (Spottiswoode
1969, page 727).

Other indirect evidence suggesting that observers are sensitive to the effects of
gravity comes from an unpublished report by Johansson and Jansson (1967). They
showed four films of divers diving into a pool. Subjects were asked to set the film
speed to the value that made the event look natural. Settings were consistent within
subjects and across films, varying from 5% to 15% of the projection speed. The
authors did not report the constant errors, however, so we do not know if the
observers exhibited biases in their settings. It follows from equation (15) that if time
is scaled by a factor of N (eg the projector speed is increased or decreased N-fold),
perceived size may be scaled by N2. Consequently, relatively small deviations in
projection speed can have significant (ie exponential) effects on perceived size. If
subjects know the size of a typical diver and use their knowledge of the effects of
gravity, one would expect them to adjust projection speed both consistently and
accurately. Of course, other explanations for these specific data are possible.
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Relative motion of limbs, head, and torso, as well as assumptions about inertia (mass)
and average strength (force), could be combined to derive an estimate of appropriate
film speed. Our preference for the gravity-cue hypothesis is that it is as equally
relevant to nonbiological as to biological objects and it accounts for the special effects
formulation.

3 Conclusion

We presented two solutions for estimating tke absolute distance to a freely falling
object. Equation (12) does not require that the apex of the flight be visible but does
require a measurement of retinal acceleration. Equation (14) requires a visible apex
but does not require retinal acceleration. Human observers are apparently not very
good at discriminating object motions differing in acceleration (Gottsdanker et al
1961; Schmerler 1976), so we speculate that distance estimation is much better when
the apex of the flight of an object is visible. (This may even provide a duplication of
information when deceleration to the apex has been observed prior to acceleration
from apex.) We assume that knowledge of absolute distance and retinal projection of
even unfamiliar objects will allow direct evaluation of their absolute size. Again,
however, we expect this estimation of size will be better when the apex of motion is
visible.

As noted at various points in our discussion, knowledge of the absolute distance of
an object will allow derivation of its absolute size and, likewise, knowledge of its
absolute size will allow derivation of its absolute distance. This follows from the
tangent rule in optical geometry as deftly applied by Berkeley long ago. It should be
clear, therefore, that there are a number of options as to the specific manner in which
gravity-influenced motion might be employed in object perception and motor adjust-
ment to an object in free flight. One option, of course, is that it has no effect.
Perhaps the necessary computations are too complex to be performed quickly enough
to assist behavioral timing, for example. On the other hand, if the gravity cue is used,
it may be that object distance is computed and this is followed by a secondary
derivation (egthe tangent rule) of absolute size. Or conversely, perhaps size is
computed directly and distance is derived in a secondary manner.

To summarize, we asked whether the dynamics of an object whose motion is
influenced by gravity could provide information about the absolute distance to the
object and the absolute size of the object. Formal analysis shows that, in principle,
the dynamics do provide such information. Informal evidence from judgments of
realism in filmed motion is consistent with the expectation that this available evidence
about object distance and size is operative in human vision. We would guess,
therefore, that when Newton saw the apple fall, he saw its size and distance.
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