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Several aspects of the viewing situation affect the ability to determine heading from optical flow. These
include the amount of depth variation and number of texture elements in the scene, the location and
amount of the visual field stimulated, and the position of the focus of expansion within the stimulus.
Without a quantification of the discrimination information provided by the stimuli presented to the
observer, it is impossible to determine how much of an observed change in performance reflects the
properties of neural mechanisms and strategies employed by the observer. To enable a better
quantification, we developed an ideal observer for the discrimination of heading from random-dot flow
fields. Internal noises of the ideal observer were set by the results of single-dot velocity discrimination
experiments. We compared human and ideal observer performance in discriminating headings with
different patterns of flow (e.g. radial vs laminar) presented on different parts of the retina.
Efficiency—the ratio of ideal and human thresholds—was fairly constant for the various flow patterns
and retinal eccentricities. This outcome indicates that most of the variation in human observers’ ability
to estimate heading from the flow patterns and retinal loci considered here is due to changes in the
discrimination information provided by the stimulus after measurement by the visual system. In the
discussion, we show how the ideal observer can be used to quantify the spatial distribution of heading

discrimination information for any observer translation through any scene represented by dots.

Optic flow Motion

INTRODUCTION

As an observer moves through the environment, a
changing pattern of light falls on the retina. Gibson
(1950, 1966) called this pattern the optic flow field and
showed that it could provide information to guide
navigation by allowing the observer to estimate the
direction of self-motion with respect to environmental
landmarks (Fig. 1). There is now substantial psycho-
physical evidence that human observers can use optic
flow to judge their direction of self-motion, or heading,
in a variety of situations (Warren & Hannon, 1988, 1990
Royden, Banks & Crowell, 1992). However, as in most
visual tasks, the accuracy of performance depends on
several stimulus properties; these include the number of
elements presented, the field of view, the retinal region
of stimulation, and the type of flow (Rieger & Toet,
1985; Warren, Morris & Kalish, 1988; Warren & Kurtz,
1992; Crowell & Banks, 1993a, b).

Psychophysical experiments measure the performance
of the visual system as a whole, so the observation that
a change in stimulus properties leads to a change in
performance does not yield a simple interpretation. In
the case of heading judgments,.two possibilities come to
mind: (1) the psychophysical effect could reflect a change
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in the amount of information available in the internal
representation of the optic flow field; or (2) it could
reflect a change in the efficiency with which the heading
is computed from that internal representation. Here we
present a means to distinguish between these two in-
terpretations.

The importance of making such a distinction can
hardly be overstated: In the study of 3D object- or
self-motion, psychophysical results will hopefully reveal
the properties of the mechanisms, cues, or strategies
human observers use to perform various tasks. We
cannot conclude, however, that an observed psycho-
physical effect is due to such properties unless we can
rule out the possibility that the effect is simply a conse-
quence of changing the amount of information provided
by the experimental displays.

The following example will help to make this point
clear. Numerous investigators have examined the ability
to maintain or estimate direction of self-motion in
simulated flight. For example, there have been many
studies of the ability to discriminate changes in altitude
or to maintain a fixed altitude in simulated flight above
a ground plane (Warren, 1982). Observers are generally
better at maintaining altitude or detecting altitude
change when the texture in the display consists of lines
parallel to the component of forward motion (i.e. the
component parallel to the ground) than when the texture
consists of lines perpendicular to the forward component
(Flach, Hagen & Larish, 1992; Warren, 1988; Wolpert,
1987, 1988). It is not obvious why performance should
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be better in the first case because altitude changes in both
cases cause changes in the flow field. If the lines are
parallel to the forward motion component, a decrease in
altitude causes their images to rotate towards the hori-
zontal. If the lines are perpendicular to the forward
component, an altitude decrease causes changes in the
speed of the images of the lines. There are two possible
interpretations for the superiority of lines parallel to the
observer’s motion. First, human observers may have
developed more efficient neural mechanisms or strategies
for picking up altitude information from the projections
of such lines over time (such as optical splay angle, the
orientation of the lines’ images with respect to the
vertical meridian). Second, changes in lines parallel to
the motion may simply provide better information for
the specification of an altitude change without reference
to the type of nervous system to which the information
is presented; that is, any efficient machine might exhibit
the same behavior. For example, when the lines are
perpendicular to the forward motion, the observer must
detect a change on top of the optic flow created by the
forward motion (with parallel lines, forward motion
creates no optic flow) and this might lead to poorer
performance. Without a means to decide which is the
better interpretation, one does not know whether these
results tell us more about the observer or about the
information in the displays.

Another example allows us to introduce the exper-
imental observations upon which our analysis is based.
While walking or operating a motor vehicle, people
usually fixate in a direction near their path of motion.
but it is not uncommon to look in another direction.
When a person looks near the path (holding gaze
position fixed relative to the direction of self-motion by
looking at a distant object), the central visual field is
exposed to a radial pattern of flow with the focus of
expansion near the fovea. When a person looks in
another direction (again holding gaze position relative to
self-motion fixed), the central visual field is presented
with a more laminar flow pattern and the focus of
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FIGURE 1. Flow field created by observer translation. The scene is

a ground plane, a near wall on the right and a farther wall on the left.

The vectors represent the motions in the image plane of dots in the

scene. The observer’s heading is indicated by the circle, and it can be

estimated by triangulation using two or more non-collinear flow
vectors,
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FIGURE 2. Schematic of the experiments of Crowell and Banks
(1993a). (A) Top view of the experimental apparatus. Retinal eccentric-
ity was varied by moving the fixation point (represented by @); the
type of flow presented was manipulated by varying the observer’s
heading with respect to the display, or heading eccentricity. The
simulated heading is represented by the arrows. (B) Radial flow field
created by translation towards the display (heading eccentric-
ity = 0 deg). (C) Laminar flow field created by translation paraliel to
the display (heading eccentricity = 90 deg).

expansion is imaged on the peripheral retina. Does the
ability to estimate one’s heading differ in those two
situations? Crowell and Banks (1993a), Warren and
Kurtz (1992), and Wolpert (1987) examined this ques-
tion psychophysically by presenting different types of
flow fields to different parts of the retina.

Crowell and Banks (1993a) asked observers to dis-
criminate directions of self-motion when presented with
small flow fields. When the focus of expansion was in the
middle of the stimulus, a radial flow field was created
[Fig. 2(B)]; when the focus was not within the stimulus,
a laminar field was created [Fig. 2(C)]. Crowell and
Banks reported that heading discrimination thresholds
are much lower with radial than with laminar flow fields.
Should this difference in performance be attributed to a
greater amount of discrimination information provided
by radial flow or to more efficient use of the information
specifying heading with radial flow? The approach pre-
sented here allows one to distinguish these possibilities.

The approach, based on the theory of ideal observers
(Green & Swets, 1966), allows one to quantify the
performance limitations imposed by the discrimination
information in the stimulus. As applied to vision by
Barlow (1958, 1962), Geisler (1989), Rose (1948), and
others, the approach consists of comparisons of human
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observers’ performance with ideal observer performance
for the same stimuli. Ideal observers have three main
elements: (1) a precise description of the stimuli includ-
ing any random variation or noise; (2) descriptions of
how the stimuli are modified by the visual processing
stages incorporated in the analysis; and (3) a statistically
optimal rule for selecting a response when presented with
a sample from the stimulus distributions (the “decision
rule”). Such observers specify the best possible perform-
ance (e.g. the dimmest detectable light) given the vari-
ability in the stimulus and information losses in the
incorporated processing stages. Because ideal observer
performance is the best possible, the thresholds obtained
are a measure of the discrimination information avail-
able in the stimulus once processed by the incorporated
stages. Poorer performance by the human observer must
be due to information losses in processing stages that
were not incorporated in the ideal observer.

An important concept in this approach is that of the
efficiency of the human observer. The efficiency is a
measure of the gap between human and ideal perform-
ance;* it is the number that computational models must
attempt to explain.

If a given experimental manipulation leads to a change
in human performance, there is a natural tendency to
develop theories of the observer to explain the change.
However, if the observer’s efficiency is unchanged by the
manipulation (because the amount of information avail-
able to make the discrimination is changing), such
theories of the observer are inappropriate (Watson,
1987).

Here we present an ideal observer for heading dis-
crimination tasks and show how comparisons of human
and ideal performance allow a better understanding of
the limits to performance in these tasks. Specifically, we
examine whether variations in the ability to estimate
heading from different types of flow fields presented on
different parts of the retina should be attributed to
changes in the amount of discrimination information
available in the optic flow field after it has been measured
by the human visual system or to changes in the
efficiency with which the available information is used to
estimate heading.

Heading discrimination with different retinal regions and
types of flow

Before describing the ideal observer, we present the
human data we wish to analyze. These data on heading
discrimination for different types of flow presented at
different retinal eccentricities were reported previously
by Crowell and Banks (1993a).

Observers were shown sequences of dots moving so as
to simulate motion of the observer in a straight line

*Technically, the efficiency with which a human observer can discrimi-
nate two stimuli is defined as the squared discriminability (d ) for
the human observer divided by the squared discriminability for an
ideal observer. However, this quantity is often difficult to measure,
particularly when it is low. We will use the term “efficiency” to refer
to the ratio of the ideal discriminator model’s threshold (71%
correct) to the human observer’s threshold.
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through a random 3D cloud of points. Observers viewed
the stimuli monocularly through a circular aperture
10 deg in diameter. Two motion sequences were pre-
sented on each trial; the two sequences simulated differ-
ent directions of self-motion, or headings [Fig. 2(A)].
The headings were always in the horizontal plane.
Observers indicated whether the change in heading
between the two intervals was rightward or leftward. The
angular difference between the two headings was varied
using a staircase procedure to find the 71% correct
heading discrimination threshold. The stimuli were pre-
sented at retinal eccentricities of 0 deg (central fixation),
+5, +10, and +40 deg; positive values represent tem-
poral retinal stimulation and negative values nasal
stimulation. The type of flow was manipulated indepen-
dently by varying the heading eccentricity, which is the
angle between the heading and the center of the stimulus.
Heading eccentricities of 0 deg [radial flow; Fig. 2(B)],
+5, +10, +40, and +70deg [nearly laminar flow;
[Fig. 2(C)} were presented. By independently manipulat-
ing the heading eccentricity and the retinal eccentricity,
we could ask whether different parts of the retina are
specialized for processing different kinds of flow fields.

Figure 3 shows the data from one observer plotted in
two ways. Figure 3(A) displays heading discrimination
threshold as a function of heading eccentricity for a
variety of retinal eccentricities; Fig. 3(B) displays
threshold as a function of retinal eccentricity for a
variety of heading eccentricities. There is a large and
consistent effect of heading eccentricity. The lowest
threshold of about 0.2 deg (at a heading eccentricity of
0 deg and a retinal eccentricity of 0 deg) is 100 times
lower than the highest threshold of about 20 deg (at a
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FIGURE 3. Heading thresholds from Crowell and Banks (1993a).

(A) Thresholds for observer JAC are plotted as a function of heading

eccentricity; heading eccentricity of 0 deg yields radial flow and 90 deg

yields laminar flow. The separate functions indicate different retinal

eccentricities. (B) Thresholds for observer JAC are plotted as a

function of the retinal eccentricity of stimulation, a separate function
for each heading eccentricity.
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heading eccentricity of + 70 deg at any retinal eccentric-
ity). The effect of retinal eccentricity is smaller and less
consistent. It is mostly confined to a set of narrow dips
corresponding to flow fields in which the focus of
expansion falls on the observer’s fovea.

Problem of interpretation. The observation that head-
ing is perceived more precisely with radial than with
laminar flow can be interpreted in two ways. First, the
advantage with radial flow could reflect a neural special-
ization for processing such a flow pattern. Support for
this hypothesis is provided by Regan and Beverley (1979.
1980) who demonstrated visual channels sensitive to
looming stimuli; the existence of such channels might
well yield a greater precision in perceiving heading with
radial flow as compared with laminar flow. On the other
hand, the effect of heading eccentricity could be a
consequence of the variation in discrimination infor-
mation as the distance between the focus of expansion
and the center of the stimulus is varied. Support for this
idea comes from Koenderink and van Doorn (1987) and
Crowell and Banks (1993a); they argued on geometric
grounds that random perturbations of flow vectors
should have a greater effect on the precision of heading
estimates when the separation between the flow vectors
and the focus of expansion is large. This idea is at least
qualitatively consistent with the data in Fig. 3(A).

The observation of a small advantage with radial flow
in the central as opposed to the peripheral visual field
can also be interpreted in two ways. First, it may be a
manifestation of special mechanisms for processing
radial flow centered on or near the fovea (Warren &
Kurtz, 1992). Second, it may be a consequence of having
receptive fields tuned to slower speeds in or near the
fovea (Albright, 1984; Koenderink, van Doorn & van de
Grind, 1985; McKee & Nakayama, 1984); this idea is
qualitatively consistent with the data in Fig. 3(B) be-
cause radial flow patterns provide slowly-moving dots
near the focus of expansion,

To interpret the data presented in Fig. 3. we com-
pared ideal and human performance on the same
heading discrimination tasks in the fashion schematized
in Fig. 4.

Constructing the ideal observer model

An ideal observer is conceptually very simple. It
consists of three elements: (1) a description of two or
more nominal stimuli (signals) and of the random vari-
ation in each (noise); (2) a description of how the stimuli
are affected by the processing stages incorporated in the
model; and (3) a likelihood-ratio decision rule.

Constructing an ideal observer for heading discrimi-
nations is complicated by the lack of a quantitative
model of how the human visual system computes motion
in the retinal image (element 2 above). With such a
model, we could derive an ideal observer for heading
discriminations that took as its input the raw motion
sequences presented in our experiments. There are many
candidates (e.g. Adelson & Bergen, 1985; Fleet & Jepson,
1989; Heeger, 1987; van Santen & Sperling, 1985; Wat-
son & Ahumada, 1985), but none is sufficiently detailed
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FIGURE 4. Schematic of the modified ideal observer approach. We
want to compare human performance to that of an ideal observer
having the same front-end including the stage at which an internal
representation of motion in the retinal image (optic flow) is computed
from the changing pattern of light. Any differences between human
and ideal performance reflect the efficiency of the later processing
stages. Lacking a quantitatively precise model of human optic flow
computation, we developed the approach described in the text for
quantifying the noise in the internal representation of optic flow.

nor universally accepted. Lacking such a model, we have
chosen to make a few additional assumptions about the
signals and noises that are the input to the heading
computation that allow us to estimate them from psy-
chophysical data.

Representing the signals. The *'signal” is the optic flow
field and is represented by a vector field, each vector
representing the position and velocity of a dot. The base
of the vector represents the dot’s initial position and the
tip its angular velocity at the beginning of the motion
sequence.

Incorporating noises. The noise is the random error
associated with the measurement of optic flow. We made
three assumptions about these measurement errors.

(1) We assumed that the errors associated with the
measurement of the speed and direction of each
dot are statistically independent of the measure-
ment errors for the other dots.

(2) We assumed that the means of the noise distri-
butions are zero, that is, that the measurements
are unbiased.

(3) For the sake of simplicity and computational
convenience, the speed and direction measurement
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FIGURE 5. Schematic of the noise distributions associated with each
flow vector. The motion of each dot was represented by a vector. The
contour lines around the tip of the vector represent the flow vector
measurement error probability density function; for a given motion
vector, the value of this function at any point (actually, the integral of
the function over a very small region) represents the probability that
the measured dot motion will assume that value. The length of the
distribution (o, ) is determined from the single-dot speed discrimination
thresholds and the width (o,) from the direction thresholds.

error distributions were assumed to be Normal.*
Given means of zero, we only need to specify the
standard deviation (o) to determine each distri-
bution completely. Standard deviations for a var-
iety of base speeds and retinal eccentricities were
estimated from the results of the single-dot direc-
tion and speed discrimination experiments de-
scribed in the Appendix.

The results of the single-dot discrimination exper-
iments are summarized in Figs 15 and 16. As expected,
direction and speed discrimination thresholds were
roughly constant at high speeds and increased markedly
at low speeds. The speed below which threshold began
to rise was higher at greater retinal eccentricities. The
variations in threshold lead to corresponding variations
in the standard deviations of the ideal observer's
measurement error distributions (see Fig. 6).

*For direction, the distributions were actually wrapped Normals. A
wrapped Normal distribution is a linear Normal distribution that
has been wrapped around the circumference of a circle with each
successive wrap added on to the ones before, i.e.

PO 1 £ At 2kt
(0) = G\/E;kzz . € e

For small values of ¢ (¢ < ~ 70 deg), a wrapped Normal looks like an
ordinary Normal distribution; as ¢ goes to infinity. it asymptoti-
cally approaches a uniform distribution, P(€) = 1.2z (€ in radians).
A wrapped normal random variable is easy to generate: it is an
ordinary Normal variable mod 2x. Wrapped Normal variables are
also convenient because they possess the additive property
(Mardia, 1972): that is, the sum of two random wrapped Normal
variables with width parameters o, and o, is a wrapped Normal
variable with width parameter o, , , = ./} + 2. The density func-
tion is well-approximated by a Normal density for small values of
o and by the expression P(#) = (1 + 2(p cos(f)) + p* cos(20)))/2n
for large values of ¢. where p =exp(—a’ 2).
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If we represent a dot’s motion by a vector, then the
measurement errors can be represented by a 2D prob-
ability distribution that is (by assumption) the product
of two 1D distributions: a speed error distribution
parallel to the vector and an orthogonal direction error
distribution (Fig. 5). The human observers’ speed dis-
crimination thresholds in the single-dot experiment are
used to set the standard deviations of the speed error
distributions (the lengths of the joint distributions), and
their direction discrimination thresholds are used to set
the standard deviations of the direction error distri-
butions (the widths).

The speed error standard deviations were calculated
using the formula o, = dm,/d’, where om; is the 71%
correct speed discrimination threshold (i.e., the differ-
ence between the means of the distributions that yielded
71% correct performance) and 4’ is the discriminability
index corresponding to 71% correct (d”=0.78). For
most cases the direction standard deviations (g,) were
calculated in a similar fashion from the direction dis-
crimination data. For cases in which the threshold was
high (when a wrapped Normal density function is not
well-approximated by an ordinary Normal) the value of
o, was determined by numerically integrating the
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FIGURE 6. Width (6,) and length (o,) parameters of ideal observer’s
noise distributions as a function of base speed. The data points are the
averages of the three observers’ thresholds. (A) The single-dot direc-
tion discrimination data and the one-parameter curves used to fit each
data set; different lines represent curves obtained at retinal eccentric-
ities of 0, 10 and 40deg. The curves were used to interpolate or
extrapolate a o -value for any combination of base speed and retinal
eccentricity. (B) The single-dot speed discrimination data and the
one-parameter curves used to fit each data set; again different lines
represent curves obtained at different retinal eccentricities. The curves
were used to interpolate or extrapolate o-values for different base
speeds and retinal eccentricities. In each panel the thinner black line
indicates the noises assumed by Koenderink and van Doorn (1987) (see
Discussion).
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appropriate areas under the probability density func-
tions for a trial value of o, and adjusting that value until
71% correct performance was achieved. Finally, a one-
parameter family of curves was fitted to the sets of o-
and a,-values with retinal eccentricity as the parameter.
Three of these curves (for retinal eccentricities of 0, 10,
and 40 deg) are shown in Fig. 6 along with the o and
os-values calculated from the thresholds (averaged
across observers) of the single-dot experiment.

The velocities of the dots in the heading experiments
of Crowell and Banks (1993a) spanned a large and
continuous range. Thus, the one-parameter functions
shown in Fig. 6 were used to interpolate values for o,
and o4 in modeling those experiments. Extrapolation
was occasionally necessary, but the dot speeds in the
heading experiments were almost always within the
range covered by the single-dot experiment.

Speed uncertainty in a 3D cloud

The sensation of self-motion 1s aided by presenting
a stimulus with a wide range of simulated depths
(Andersen & Braunstein, 1985; Howard & Heckmann,
1989). A 3D cloud of randomly-positioned dots is very
effective in this regard, but it complicates the modeling.
The depth (and hence the speed) of a dot in the cloud
is random, and this randomness in the stimulus must be
incorporated in the ideal observer. This is accomplished
by treating each dot’s speed (the length of each flow
vector) as an uncertainty parameter. This uncertainty
with regard to speed is represented by a probability
density function. In the experiments of Crowell and
Banks (1993a), the distances to the dots in the 3D cloud
were transformed such that the distribution of velocities
along any given line of sight was uniform at the begin-
ning of a trial. Thus, the density function is zero for
speeds slower than those of the most distant dots or
faster than the closest ones; in between, the density

function is
1 — (TSlrn(H)<vd<Tsm(H)> o
T sin(8) (— — —> ° "

re Ty

Sflvg) =

where v, 1s the angular velocity of a dot in the display,
T is the observer’s translational speed, 0 is the visual
angle between the heading and the dot in question, and
r; and r, are the radial distances from the observer to the
front and back of the cloud, respectively.

How does this affect the ideal observer calculations?
The ideal observer works with the likelihoods of observ-
ing a given set of flow vectors given each of the possible
headings. If all of the dots in each stimulus were at one
known depth, then calculating the likelihoods would be
straightforward: there would be one expected speed at
each point associated with each heading, and the like-
lihood of any deviation from this value in the measured
speed would be given directly by the value of the
appropriate speed error probability density function.
With a range of possible depths (and hence of possible
speeds), the likelihood of any given measured speed has

to be calculated by summing across the set of all possible
depths at that point in the scene. Furthermore, because
the direction error standard deviation (o4) depends on
speed, a similar summation has to be performed to
calculate the likelihood of any observed vector direction
given each of the possible headings. In order to calculate
the likelihood of a variable when there is an uncertainty
parameter, the probability density function must be
integrated over all possible values of that parameter. For
example, the likelihood of the observed direction («;) for
the ith flow vector given the hypothesis of the jth
heading (H,) is

T sin(f)

J o By o)A ) (2)

T sin(6)
4

N H)) =

where f(2,|H;,v,) is the conditional probability of ob-
serving flow vector direction «; given heading H, and
a speed of v, in the display, and f(vy) is the prior
distribution of display speeds [equation (1)]. We evalu-
ated these integrals numerically using a fourth-order
Runge-Kutta method (Press, Flannery, Teukolsky &
Vetterling, 1988).

The existence of uncertainty about the dot speeds
degrades the performance of the ideal observer model.
The reason for this decrement in performance is illus-
trated in Fig. 7. Figure 7(A) shows flow fields created by
two different headings; the corresponding foci of expan-
sion are indicated by the small square and circle. Figure
7(B, C) shows the distributions of dot speeds that the
observer can expect to see at a single location in the field,
indicated by the circle in Fig. 7(A). Figure 7(B) shows
the probability density function of observed speeds for
a plane stimulus given each of the two possible headings.
In this case, there is only a single possible speed in the
stimulus for each of the two headings, corresponding to
the locations of the peaks of the two functions. The two
probability distributions result solely from the Nor-
mally-distributed noise added by the ideal observer’s
front end. The vertical line marks the criterion value of
speed that optimizes the proportion of correct responses;
that is, if the ideal observer used only the information in
the speed of a single dot at this point in the field, it
should select a response based on whether the observed
speed were above or below this criterion. If it were to do
s0, it would achieve 77% correct performance.

Figure 7(C) shows the density functions for observed
speeds with a cloud stimulus. Now the ideal observer’s
internal speed noise is added on top of the random
variation in speed due to randomization of depths within
the cloud. As a result, the distributions of observed
speeds are broader and overlap more; in this situation,
the best possible performance using this vector speed is
only 60% correct. The same considerations apply to the
other dots in the stimulus. As a consequence, the
model’s heading estimates would be more precise with
the single plane than they are for 3D clouds. Whether
such a reduction in depth (and therefore speed) uncer-
tainty makes any difference to human observers is an
important and unresolved question.
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IGURE 7. Probability densities of observed speeds (after addition of internal noise) in (B) a plane stimulus and (C) a 3D cloud

with the same mean speed. The two curves in each panel are for the same location in the visual field with two different headings;

the location is indicated by C and the two headings by the O and [J in (A). Because there is random variability in the speed

in the display in the case of a 3D cloud, the distributions for the two headings overlap more and there is less information

available for discriminating the two headings; using only a single vector speed observation, the ideal observer would attain
77% correct performance with the plane, but only 60% correct with the cloud.

Implementation of optimal decision rule

For two-interval experiments like the ones considered
here, an ideal discriminator operates by calculating a
single number for the trial, the likelihood ratio, and then
making a decision by determining whether that number
is greater or less than some criterion. This decision rule
yields optimal discrimination performance with respect
to a variety of goals (Green & Swets, 1966). The
likelihood is the probability of an observation—in our
case, an observation consists of two samples of flow
vectors created by the two possible headings and cor-
rupted by measurement error—if a particular state of the
world exists. Let (AB) represent the hypothesis that
observer motion A (e.g. simulated motion straight
ahead) was presented in the first interval and observer
motion B (e.g. simulated motion to the right of straight
ahead) was presented second, and let (BA ) represent the
hypothesis that B was presented first and A second. The
likelihood ratio for a given observation (®,, ®,) is given
by: L = P(®,, D,|{AB))/P(®,, D,/ {BA>). In the two-
interval, forced-choice task. the observer maximizes
percent correct by responding that the first interval
contained the stimulus corresponding to straight ahead
when the likelihood ratio is greater than 1 and by
responding that the second interval contained the
straight-ahead motion when the likelihood ratio is less
than 1.

For some tasks, one can calculate the distributions of
the likelihood ratio analytically given each of the two
hypotheses and then directly calculate the discriminabil-
ity of the two sets of signals and noises (e.g. Geisler,
1984). This proved too difficult for the work presented
here, so a direct Monte Carlo simulation was used
instead. Each experiment was simulated trial by trial. In

each trial, both signals (the set of directions and speeds
associated with each of the possible observer motions)
were generated and corrupted by a set of random
variables drawn from the appropriate noise distri-
butions. The likelihood ratio was computed as described
above, and the model selected the appropriate hypoth-
esis depending on whether the likelihood ratio was
greater or less than 1. The motion increment (2D
direction or speed or 3D heading) was varied using a
2-down/1-up staircase procedure to find the ideal dis-
criminator’s 71%.-correct threshold.

How is heading information distributed in the optic flow
field?

One of the motivations for Gibson’s conceptualization
of the optic flow field was to provide a tool for determin-
ing where the best information was for various naviga-
tion tasks. For instance, he wanted to determine where
the best information lay for visual guidance of an
aircraft landing (Gibson, Olum & Rosenblatt, 1955).
Gibson’s approach, however, did not yield a means for
quantifying the information contained in various parts
of a given optic flow field.

The approach outlined here provides a means for
quantification for a wide variety of observer motions and
scenes. Figure 8 displays pairs of flow fields created by
observer motion relative to a frontoparallel plane. In (A)
the two flow fields were created by translation 1 deg to
the left (open arrows) and 1deg to the right (solid
arrows) of straight ahead. In (B) the headings are 4
(open) and 6deg (solid) to the right, and in (C) the
headings are 50 and 90 deg (parallel to the plane) to
the right. The changes in heading lead to changes in
the vector lengths (speeds) and directions. Most
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FIGURE 8. Flow fields created by two pairs of headings relative to
a frontoparalle] plane. In all cases, the field of view is 10 deg square.
(A) Headings are 1deg to the left and 1deg to the right of straight
ahead. The flow field associated with the former heading is indicated
by the solid arrows and the one associated with the latter heading is
indicated by the open-headed arrows. (B) Headings are 4 deg (solid
arrows) and 6 deg (open-headed arrows) to the right. (C) Headings are
40 deg (solid arrows) and 100 deg (open-headed arrows) to the right.
In all three panels the differences in directions and magnitudes between
the two flow fields vary across the stimulus field. This variation
exemplifies how the amount of information for discriminating the two
headings varies from one stimulus region to another. The magnitudes
of the differences are smaller in (C) even though the difference in
headings is 30 times greater than in (A) and (B).

importantly. the magnitudes of those changes vary
across the stimulus field. For example, in Fig. 8(A) the
differences in vector directions are large directly above
and below the headings, but go to zero on either side; the
opposite is true for the differences in vector magnitudes.
In signal-detection terms, the amount of information
available for discriminating two signals is just the differ-
ence between the signals expressed in units of the
parameters (g, and o) of the measurement error distri-
butions. We can show how useful different parts of the
field are for discriminating these pairs of headings by
plotting the differences in directions and speeds between
the two flow fields in each pair divided by the appropri-
ate standard deviations.

Figure 9 plots the differences in vector directions and
speeds for the pairs of flow fields depicted in Fig. 8.
Brightness is proportional to the magnitudes of the
differences divided by the appropriate noise standard
deviation computed from the curves in Fig. 6, so brighter
areas represent regions in the stimulus field with larger
differences relative to the noise. Stated another way, the
brightest areas represent the regions in the stimulus field
that contain the greatest information for discriminating
the two headings. The top-left panel of Fig. 9 shows that
the largest differences in vector directions occur above
and below the center of the stimulus field when the two
alternatives are nearly straight ahead; the top-right panel
shows that the largest speed differences occur to the left
and right of center. The bottom-left panel of Fig. 9
shows that the largest differences in direction occur in
the upper- and lower-right corners of the field when the
two alternatives are off to the right; the bottom-right
panel shows that the speed differences increase monoton-
ically from left to right. The two middle panels show that
when the heading is towards the edge of the display, the
pattern of differences is intermediate between the other
two types. Clearly, the regions of the visual field contain-
ing the largest changes in flow vector directions and
speeds differ depending on the headings from which the
observer must choose.

Figures 10 and 11 show the application of the ideal
observer model to the task of discriminating the alterna-
tive headings in Fig. 8. These figures were constructed by
forcing the ideal observer to make the discriminations
using only information in small regions of the visual
field. Brightness is proportional to the percentage of
correct responses the model attained while using only the
information available at that position in the field. These
are the results of Monte Carlo simulations, so the plots
are somewhat noisy. The noises built into the ideal
observer vary with retinal eccentricity and this property
1s included in the demonstration figures.

In Fig. 10, the model is *“‘fixating” the center of the
stimulus field. The three panels display the model’s
performance at distinguishing headings similar to those
represented in the corresponding panels of Fig. 8. The
differences between the headings used in this figure are
smaller; the actual headings are 0.25 deg to the right and
left of straight ahead [Fig. 10(A)], 4.25 and 5.75 deg to
the right [Fig. 10(B)], and 50 and 90 deg to the right
[Fig. 10(C)]. Besides the smaller difference between the
two headings, the situation differed from that described
in Fig. 8 in that the scene was a random 3D cloud of dots
(depths from 70 to 570 cm) instead of a frontoparallel
plane. As previously discussed, a random cloud provides
less speed information than a plane.

As one might expect, the panels in this figure are quite
similar to the corresponding panels in the left column of
Fig. 9 indicating that the ideal observer’s performance in
this task is largely determined by direction rather than
speed information. When the focus of expansion is
visible [Fig. 10(A, B)], the most informative vectors are
those above and below it; when the focus is not visible
[Fig. 10(C)], the most informative vectors are at the top
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FIGURE 9. Spatial distribution of differences in vector directions and speeds for the flow fields displayed in Fig. 8. The top,
middle. and bottom panels are derived from the flow field pairs in the corresponding panels of Fig. 8. In each case, brightness
is proportional to the magnitude of the differences divided by the noise standard deviation (computed from Fig. 6). Brighter
grays indicate larger differences relative to the noise and hence indicate better information for discrimination. The upper
two rows of panels were rendered using the same brightness scale. but the scale in the bottom row of panels was magnified
in order to make the variations more visible. The left panels display the differences in vector directions for various positions.
The brightness peaks are actually much sharper than shown: they have been clipped to render the dimmer regions more
visible. Scaled differences in vector directions are largest above and below the focus of expansion except in the bottom panel
where the focus of expansion is not visible. The right panels display the differences in vector speeds. Differences in speeds
are largest to the left and right of the focus of expansion except in the bottom panels where the focus of expansion is
not visible.

and bottom of the field. These results are specific to different outcomes would be obtained for different situ-
a particular type of stimulus (high-contrast dots), ations.

scene geometry (a uniform 3D cloud), and task (discrimi- Figure 11 shows the effect of retinal eccentricity on the
nation of headings in the horizontal plane). Obviously. information in a radial flow pattern. Figure 11(A) is a
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FIGURE 10. Model's performance as a function of location in the visual field for discriminating headings similar to those

in Fig. 8. The actual headings were +0.25 deg (A), 4.25 deg and 5.75 deg to the right (B), and 50 deg and 90 deg to the right

(C). The stimulus was a random 3D cloud instead of a frontoparallel plane. The gray level at each point indicates the proportion

of correct responses the model achieved using only the information at that position in the stimulus; the scale has been truncated

at 60% correct performance (although chance performance was 50% correct) to increase the differences between the gray levels.

Note the similarity of the panels to the corresponding left panels in Fig. 9, which shows that the ideal observer’s performance
is determined primarily by the information in flow vector directions.

copy of the top panel of Fig. 10; the headings are again
0.25 deg to the left and to the right of straight ahead.
Figure 11(B) shows the model’s performance at discrim-
inating the same two headings with its peripheral “‘ret-
ina”; the center of the display is located 40 deg from its
“fovea”. The values above and below the focus of
expansion are dimmer in this panel, which indicates that
the information near the focus is reduced by peripheral
viewing. Figure 11(C) illustrates this point in detail; it

shows a vertical slice taken through the center of each
of Fig. 11(A, B). The largest effect of retinal eccentricity
occurs in the vicinity of the focus of expansion; the gap
between the two curves representing central and periph-
eral performance is greatest at the center of the graph
and decreases towards the sides. This reflects the fact
that central and peripheral sensitivity to motion differs
most for slow speeds which are observed around the
focus of expansion.
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FIGURE 11. Model’s performance as a function of location in the visual field for discriminating headings presented on different
parts of the retina. The headings were +0.25 deg, which are the same as those in Fig. 10{A). The gray level at each point
indicates the proportion of correct responses the model achieved using only the information at that position in the stimulus;
the scale has been truncated at 60% correct performance (although chance performance was 50% correct) to increase the
differences between the gray levels. (A) Performance when the stimulus patch was presented in the central visual field (retinal
eccentricity = 0 deg). (B) Performance when it was presented in the periphery (retinal eccentricity = 40 deg). (C) Proportion
correct as a function of vertical position in the stimulus for the positions indicated by the thin vertical lines in (A) and (B).
The model's performance is noticeably reduced when the stimulus is presented in the periphery.

For discrimination of headings in the horizontal
plane, these modeling outcomes demonstrate that: (1)
the discrimination information (both directional and
speed differences) is greatest near the focus of expansion
and decreases monotonically away from it; (2) at a fixed
distance from the focus of expansion, the information in
flow directions is greatest directly above and below the

focus of expansion and decreases monotonically to zero
at the sides; and (3) at a fixed distance from the focus of
expansion, the information in flow speeds is greatest
directly to the left and right of the focus of expansion
and decreases monotonically to zero above and below.

This application of the ideal observer should prove to
be useful in the analysis of psychophysical results. It
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FIGURE 12. Human (observer JAC) and ideal discrimination thresholds as a function of heading eccentricity. (A) Human

and model heading discrimination thresholds. Large symbols represent human thresholds at different retinal eccentricities: il

central fixation; x 40 deg nasal retina. The curves represent the ideal observer’s thresholds at the same retinal eccentricities:

the lower curve for 0 deg and the upper curve (with O) for 40 deg. (B) The relative efficiencies of the human observer; efficiency
is defined as ideal threshold divided by human threshold. Symbols as in (A).

should also be useful in some applied settings such as the
operation of vehicles. Specifically, if one can define the
scene and the set of possible observer motions quantitat-
ively, then the ideal observer described here can be used
to calculate the distribution of heading information for
that situation. This could prove useful for designing
better lighting systems and for instructing vehicle oper-
ators.

Human efficiency in discriminating heading

Two effects are revealed in the heading discrimination
data of Fig. 3. First, discrimination threshold rises by
roughly a factor of 100 as heading eccentricity is in-
creased from 0 to 70deg. Second. although there is
generally little effect of eccentric viewing, discrimination
threshold with radial flow patterns is roughly three times
lower with foveal as opposed to peripheral viewing. As
mentioned earlier, both of these effects can be inter-

preted in two ways. In regard to the heading eccentricity
effect, the advantage with radial flow could reflect a
neural specialization for processing such a flow pattern,
or it could be a consequence of the variation in discrimi-
nation information as the distance between the focus of
expansion and the center of the stimulus is varied. If the
former hypothesis is correct, then efficiency (defined as
the ratio of human/ideal threshold) should be higher for
radial than for laminar flow patterns. If the latter is
correct, efficiency as a function of heading eccentricity
should be constant. In regard to the retinal eccentricity
effect with radial flow patterns, the foveal advantage
may be a manifestation of special mechanisms for pro-
cessing radial flow in the central visual field, or it could
be a consequence of having receptive fields tuned to
slower speeds in or near the fovea. If the former
hypothesis is correct, efficiency should be greater for
foveal than for peripheral viewing of radial flow patterns
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FIGURE 13. Human (observer JAC) and ideal discrimination thresholds as a function of retinal eccentricity. (A) Human

and model heading discrimination thresholds. Large symbols represent human thresholds at different heading eccentricities:

B 0deg (radial flow); x 70deg (mostly laminar flow). The two curves represent the ideal observer’s thresholds: the lower

curve for radial and the upper curve (with Q) for laminar flow. (B) The relative efficiencies of the human observer. Symbols
as in (A).
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FIGURE [4. Comparison of ideal observer and least-squares algorithm of Koenderink and van Doorn (1987). Heading
discrimination thresholds are plotted as a function of heading eccentricity. (A, B) Thresholds when the stimulus is a random
3-D cloud of dots. (C, D) Thresholds when the stimulus is a frontal plane (initial distance = 1050 cm). (A, C) Results for central
viewing. (B. D) Results for peripheral (40 deg) viewing. In each panel. the thresholds for our ideal observer are represented
by the bold lines, thresholds for Koenderink and van Doorn’s least-squares algorithm are represented by M. and thresholds
for an ideal discriminator with the noise distributions assumed by Koenderink and van Doorn are represented by x .
(A, B) Model and human thresholds for the experiment of Crowell and Banks (1993). (A) Contains foveal data, (B) shows
results for the far periphery (the other two models’ functions are the same in both panels). The two ideal discriminators’
thresholds are virtually identical for all heading eccentricities in the fovea and in the periphery for all but the smallest heading
eccentricities. The least-squares algorithms thresholds are higher by a factor of 2 3. (C, D) Predictions of the three models for
a hypothetical experiment in which the 3D cloud is replaced with a single plane at the same initial depth as the back of the
cloud (1050 cm). In this case, our ideal observer predicts a slightly shallower heading eccentricity effect, and the overall level
of performance predicted is quite different in the periphery.

483

and, if the latter is correct, efficiency should be constant
across retinal eccentricity. Figures 12 and 13 show the
results of this analysis for the heading and retinal
eccentricity effects, respectively.

Figure 12(A) displays human and ideal heading dis-
crimination thresholds as a function of heading eccen-
tricity for foveal and peripheral viewing (0 and
40 deg). The flow fields presented to the ideal observer
were identical in extent and in the number and distri-
bution of dots to those presented to the human observ-
ers. The symbols are the human observer’s data and
the solid curves represent the model’s thresholds.
Figure 12(B) displays the relative efficiencies of the
human observer.

The results of this analysis are interesting and counter-
intuitive. First, except for heading eccentricities near
0 deg, efficiencies are reasonably constant as a function
of heading eccentricity. This means that much of the
2-log-unit degradation in discrimination performance
with laminar as opposed to radial flow patterns is a
consequence of changes in the discrimination infor-
mation provided by the stimulus. Second. there is a
decrease in efficiency around 0 deg which corresponds to
those stimuli in which the focus of expansion was visible.
This implies that the human observer is actually less
efficient at extracting information from radial flow pat-
terns than from other types. Of course. human observers

are more sensitive to the information in radial flows,
but this is a consequence of the richness of discrimi-
nation information provided by such flow patterns
rather than a manifestation of more efficient use of the
information. Third, the two efficiency curves are quite
similar in shape indicating no large differences in
efficiency between central and far peripheral viewing for
any kind of flow pattern. This leads us to conclude that
the observed differences in heading discrimination be-
tween central and far peripheral vision can be ascribed
to differences in the front-end properties of the visual
system that lead to more precise sensing of retinal image
motion in the central field (Figs 15 and 16).

Figure 13 displays heading discrimination thresholds
as a function of retinal eccentricity for two heading
eccentricities (0 and 70 deg) and Fig. 13(B) plots relative
efficiencies. The separation between the efficiency curves
for radial and laminar flow is further evidence that
human observers are less efficient in estimating head-
ing from radial than from laminar flow patterns. The
finer scale of retinal eccentricity in this figure as com-
pared with Fig. 12 reveals that relative efficiency does
in fact vary with retinal eccentricity although the vari-
ation, particularly with laminar flow patterns, is fairly
small. The small increase in relative efficiency with
radial flow patterns viewed in the fovea appears to be
reliable.
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FIGURE 15. Single-dot direction discrimination thresholds plotted

against base speed. The three panels display the data from the three

observers. Different symbols represent different retinal eccentricities:

B Odeg, A 2deg; x Sdeg; W 10deg; @ 40deg. The diagonal line
shows the single-pixel limit as described in the text.

DISCUSSION

Comparison of results with previous reports

The approach presented here allows us to distinguish
between two interpretations of psychophysical effects in
heading perception. According to one interpretation,
such effects reflect changes in the amount of information
present in the stimulus (the optic flow field) after it has
been measured by the human visual system. According
to the other, the effects manifest differences in the
efficiency with which the visual system computes a
heading estimate from the measured flow field.

Effect of type of flow pattern. Crowell and Banks
(1993a) observed a large degradation in the ability to
discriminate headings with laminar as opposed to radial
flow patterns. Regan and Beverley (1979, 1980) demon-
strated the existence of channels sensitive to the chang-
ing size of an approaching stimulus (“looming™).
Although they did not make such a prediction explicitly,
this demonstration might lead one to expect greater
efficiency in the estimation of heading from radial than
from laminar flow patterns. On the contrary. the results

JAMES A. CROWELL and MARTIN S. BANKS

of Fig. 12 show that the heading information contained
in radial flow fields is used less efficiently than the
information in laminar patterns. Thus, if channels sensi-
tive to “looming” exist, they do not allow more efficient
computation of heading than do channels sensitive to
other types of motion.

Our analyses suggest the existence of two distinct
regimes in regard to the type of flow pattern presented:
when the focus of expansion is present in the stimulus,
efficiencies are lower; when it is not present, efficiencies
are higher. This effect is of roughly equal magnitude in
the fovea and in the periphery. The fact that efficiencies
are lower when the focus of expansion is visible seems to
contradict Gibson’s original notion of how heading is
perceived. He argued that the focus of expansion pro-
vides a simple, salient marker for the direction of
self-motion. Our analyses suggest that human observers
are in a sense better (in terms of efficiency, not sensi-
tivity) at locating the focus of expansion when it is rot
visible. The question is: ““‘Does the lower efficiency with
radial flow represent a performance limitation imposed
by the stage of heading estimation, or is it a byproduct
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FIGURE 16. Single-dot speed discrimination thresholds plotted

against base speed. The three panels display the data from the three

observers. Different symbols represent different retinal eccentricities:
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shows the single-pixel limit as described in the text.
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of not incorporating some property of the retinal motion
estimation stage into the ideal discriminator model (see
Fig. 4)7” An example of the second possibility would be
an inability to resolve the directions of the dots near the
focus of expansion because they change so rapidly over
a small area. One could test this possibility by presenting
the same stimuli with the area around and including the
focus of the expansion masked off. Warren and Kurtz
(1992) performed such an experiment and found
a performance decrement when an area around the focus
of expansion 10 deg or more in diameter was masked
(they did not use smaller masks). For the purpose of
testing the above hypothesis, we would need to know
whether masking off a smaller area around the focus of
expansion increased human observers’ efficiency.

Effect of locus of retinal stimulation. The results
depicted in Fig. 13 reveal little or no effect of retinal
eccentricity. In particular, there were no significant
differences in efficiency between central and peripheral
vision, although there was a small gain in efficiency with
radial flow fields in the fovea.

Warren and Kurtz (1992) have argued that heading
estimates are more readily derived from radial flow in the
central visual field than in the peripheral field. Our
results are consistent with this claim, but the observed
effect is very small (at most a factor of two).

There have been several claims in the literature that
peripheral vision is better-suited to visual guidance of
self-motion. For example, it has been hypothesized that
peripheral vision is more influential than central in
vection and postural control (e.g. Amblard & Carblanc,
1980; Brandt, Dichgans & Koenig, 1973; Held, Dichgans
& Bauer, 1975). The mechanisms that compute heading
from the internal representation of retinal image motion
appear to be fairly homogeneous across the visual field.
Thus, our results are inconsistent with the peripheral
dominance hypothesis if we allow a generalization be-
tween our modeling of heading perception and the tasks
involved in vection and postural control.

Qverall efficiency. The relative efficiencies for the
experimental conditions represented in Figs 12 and 13
ranged from 0.02 to 0.50. These efficiencies are rather
high compared to those observed in many visual dis-
crimination tasks, but there is an obvious explanation:
the ideal observers that served as the performance
benchmark in most analyses of visual discrimination
(e.g. Banks, Geisler & Bennett, 1987; Barlow, 1958,
1962; Geisler, 1984, 1989) only incorporated stimulus
properties, optical processing, and transduction among
the photoreceptors whereas the observer presented here
incorporated all visual processing stages up to and
including the internal representation of dot motions. For
this reason, the level of performance for the present ideal
observer was lower than would have been the case for an
observer with fewer stages incorporated, and estimated
efficiencies were correspondingly higher.

It is important to consider what properties of the
visual system limit the overall efficiencies. Stated another
way, why is the observed discrimination performance
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poorer than exhibited by the model? There are several
possibilities, some of which are discussed in the next
section, but the primary cause of the observed gap is
undoubtedly limited sampling efficiency (Legge, Kersten
& Burgess, 1987). Specifically, the ideal observer uses the
discrimination information contained in all of the dots
and human observers probably do not. The evidence for
this is as follows. One expects discrimination threshold
of the ideal observer model to fall roughly in proportion
to the square-root of the number of dots (assuming
random assignment of dot position from one stimulus
presentation to another). Discrimination thresholds in
human observers fall, as expected, as the number of dots
is increased from 2 to 10, but thresholds asymptote for
larger numbers (Warren et al., 1988). Relative efficiency
should, therefore, decrease roughly as the square-root of
dot number for displays containing more than 10-20
dots. The stimuli upon which our analysis is based
(Crowell and Banks, 1993a) contained 500 dots on
average, a range in which human observers almost
certainly do not effectively utilize the information in each
dot. One can estimate how much of the reduction in
overall efficiency can be attributed to an inability to
sample the information contained in the additional dots
efficiently. Assuming that 10 dots are sampled efficiently
and more are not, the square-root of the ratio of dots
sampled divided by dots presented is \/E/SOO, which is
0.14. One cannot place too much credence in this
number because the experimental stimuli and task in
Warren et al. (1988) were different from those in Crowell
and Banks (1993b). Nonetheless, because the predicted
efficiency of about 0.14 is similar the observed efficien-
cies, we speculate that much, but not all, of the reduced
efficiency we observed is caused by inefficient use of the
information in all the dots when more than 10 are
presented.

Assumptions in ideal observer model

We had to make a number of assumptions in con-
structing the ideal observer. Here we review those as-
sumptions and discuss their relevance in regard to our
main conclusions.

Use of single-dot experiments to set noises. We used the
results of single-dot discrimination experiments to con-
struct the ideal observer for heading discrimination. In
so doing, we assumed that the only important difference
between the two types of discrimination is that heading
requires an additional computation stage. However, an
observer’s performance in a discrimination experiment is
also a function of his or her decision strategy. It is
possible that our observers used either more or less
efficient decision strategies in the single-dot experiment
than in the heading experiment, which would lead to an
error in the estimate of the noise associated with the
measured optic flow that serves as input to the heading
computation stage.

We believe that our observers used equally efficient
decision strategies in the two types of tasks for the
following reasons. First, observers were highly trained in
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all of the experiments discussed here; they did not begin
formal data collection until their thresholds asymptoted.
It is unlikely, therefore, that the observers’ strategics
imposed a major limitation on performance in either
single-dot or heading tasks. Second, human and ideal
equivalent input noises in heading tasks are very similar.
Crowell (1993) has compared human performance to
that of our ideal observer in the presence of added
stimulus noise. In such an experiment, performance
typically is unaffected by added noise until a certain
noise level is reached; this level is referred to as the
“equivalent input noise” (Pelli, 1990), and constitutes an
estimate of the internal noise associated with a given
task. Recall that the internal noise in the ideal observer
model is derived from human performance in the single-
dot experiments; therefore, the similar equivalent input
noises found by Crowell (1993) indicate that the single-
dot results provide a reasonable estimate of the noise in
the measurement of optic flow by the human visual
system. Third, the efficiency of the human observer
approaches 1 in the heading task when the number of
dots is small (Crowell, 1993). That is to say, the heading
discriminating thresholds of the human observer are
nearly as low as those of the ideal observer when four
or fewer dots are presented. Because the noises in the
ideal observer were derived from the single-dot exper-
iment, the similarity of thresholds argues against a
significant difference in the efficiency of the decision
strategy in the single-dot and heading experiments.

Single vector assumption. A vector with fixed direction
and speed represented the motion of each dot during a
stimulus presentation. The use of single vectors misrep-
resents the true dot motions because they actually
accelerate over time; of course, their directions do not
change. The magnitude of the acceleration depends on
the ratio of the initial and final distances for a given dot
and on the angle between the dot and the focus of
expansion. The acceleration is largest for a heading of
0 deg and smallest for one of 90 deg. Fortunately, the
accelerations were generally very small in the exper-
iments considered here. For example, for headings of
0 deg, the average dot speed increased by only 5% over
the course of a stimulus presentation. Thus, the single
vector assumption is reasonable.

Independence assumption. We assumed that the noises
associated with the measurement of the speed and
direction of each dot were statistically independent and
this assumption is probably incorrect. The assumption
of independence leads to the best possible model per-
formance because it allows errors to be averaged out
across dots. If the noises were assumed to be perfectly
correlated, there would be no advantage to incorporat-
ing more than one dot. If the independence assumption
were correct, the accuracy of heading discrimination
should increase in proportion to the square-root of the
number of dots in the display. In contrast, Warren et al.
(1988) and Crowell and Banks (1993b) have shown that
discrimination performance asymptotes at 10-20 dots. A
plausible explanation for this observation of no further
improvement in performance with increasing dot num-
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ber is the following. If the motions of dots in optic flow
displays are analyzed by a limited number of sensors
with spatially-extended receptive fields, then with a large
numbers of dots, many are processed by the same sensor.
If some of the noise associated with measuring dot
motion is generated at the sensor, there will be a
necessary spatial correlation among the noises associ-
ated with many of the dots. This would violate the
independence assumption and limit performance with an
increasing numbers of dots.

Despite the implausibility of the independence as-
sumption, it is best at this point of our understanding to
assume independent noises for the following reason.
With the ideal observer approach, stimuli are deemed to
provide a certain amount of information to the observer.
The observer can either use all of the available infor-
mation or (more likely) lose some of it to internal noise
or to poor information-processing mechanisms and
strategies. The observer is described in terms of the
proportion of the available information that he or she
can make use of across various transformations of the
stimuli. The model of the observer is a set of mathemati-
cal assertions about aspects of the observer that cause
the loss of certain kinds of information. As a corollary,
one should leave out performance-degrading modeling
steps unless there is clear evidence that such steps exist
or one wishes to build in such steps and examine their
effects in isolation. This is equivalent to assuming that
all aspects of the observer for which one does not have
specific evidence or a specific model are ideal (Watson,
1987). In the present context, we believe it is safer to
make the independence assumption until there is more
detailed information on the nature of correlations
among motion measurements. In a forthcoming paper
(Crowell & Banks, 1996), we will discuss results bearing
on the independence assumption.

No bias assumption. We also assumed that the
measurements of dot speed and direction are unbiased.
This assumption may also be incorrect, particularly for
the measurement of speed. Stone and Thompson (1992)
have shown, for example, that the perceived speed of a
grating moving at a constant speed is proportional to its
contrast. In addition, the existence of phenomena such
as motion contrast and induced motion (reviewed in
Anstis, 1986) suggest that under certain conditions of
relative motion the absolute motion of an object is not
perceived veridically. We hasten to point out, however,
that biases in the speed measurements are unlikely to
have significant effects on discrimination tasks like those
considered here. Such effects might be important if we
were attempting to model perceived heading rather than
just the precision of heading discrimination.

Use of speed information. The pattern of flow vector
directions depends only on the position in the visual field
relative to the focus of expansion, but the speed at a
given point in the retinal image depends on the depth as
well as on the heading (except at the focus of expansion,
where the speed is zero). Because the ideal observer
presented here made use of the speed differences, com-
parison of ideal and human performance is tantamount
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to assuming that the human observer has knowledge of
the distribution of depths in the scene. As stated above,
we believe it is better at first to assume that this
information is used until there is evidence to the con-
trary. Our results do not allow us to determine whether
or not this assumption is correct; because we used a 3D
random cloud of points, there was very little speed
information available to begin with, and in fact the ideal
observer performed almost identically when we re-
stricted it to using only the information in the flow
vector directions. Interestingly, Vishton, Nijhawan and
Cutting (1994) have shown that the visual system takes
advantage of independent depth information in some
heading tasks. Specifically, they showed that the depth
information conveyed by relative size and changing size
improved the ability to estimate heading when the
simulated observer motion included rotations.

Comparison with Koenderink and van Doorn’s (1987)
least-squares algorithm

Koenderink and van Doorn (1987) described and
implemented a least-squares solution to the optic flow
equations. This algorithm has been described as an ideal
observer (van den Berg & Brenner, 1994). In this section.
we will discuss the similarities and differences between
their approach and ours.

As described above, our ideal observer has two main
components: (1) a representation of the optic flow field
(the signal) and the associated noise or error after
measurement by the visual system; and (2) a statistically-
optimal decision strategy for discriminating between
pairs of flow fields created by different headings.

With regard to representing signals and noises, Koen-
derink and van Doorn (1987) took a similar approach to
ours. That is, they represented the optic flow by a vector
field and estimated the noise values from the results of
psychophysical experiments on human velocity discrimi-
nation (McKee & Nakayama, 1984). The main differ-
ence lies in the amount of care taken in estimating the
noise values. Koenderink and van Doorn assumed that
each flow vector has associated with it a radially sym-
metric Normal noise distribution with a standard devi-
ation equal to 10% of the vector magnitude; this is
equivalent to assuming that (1) speed discrimination
thresholds follow Weber’s Law (with a Weber Fraction
of 10%) for all base speeds; (2) direction discrimination
thresholds are constant at about 5.7 deg for all base
speeds; and (3) neither kind of discrimination depends
on retinal eccentricity. As Fig. 6 shows, these assump-
tions are quite inaccurate in the peripheral retina except
at high speeds.

Their approach also differs from ours in the second
stage; in the context of Ideal Observer Theory, our
approach is more appropriate for comparison with
experiments such as those of Crowell and Banks (1993a).

*We used the same noise distributions and minimized the same error
function that they did. We did not use their particular iterative
algorithm for finding the minimum, but we were able to show that
this departure had no discernible effect.
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Koenderink and van Doorn (1987) assumed that the
observer has no prior knowledge about the layout of the
environment or about the set of motions that may be
presented (rotational motions included). For the pur-
poses of modeling our experiments, we have taken the
opposite extreme; we have assumed that the observer
knows exactly which two motions are going to be
presented on any given trial and knows exactly the
distribution of possible depths. If desired, we can calcu-
late the effects of observer uncertainty about these
parameters on performance, and we can perform exper-
iments to estimate the degree of observer uncertainty.
We believe it is better to assume complete certainty until
we have a better idea of just how uncertain the observer
is about the possible motions and scene geometry in
experiments like ours.

Finally, given the constraints they assume, the Koen-
derink and van Doorn algorithm is not quite optimal.
Their algorithm finds the set of motion parameters and
the scene geometry that minimize the sum of the squared
differences between expected and observed flow fields; an
algorithm that minimizes the squared differences divided
by the noise standard deviation for each flow vector
performs better, although for the conditions of our
experiments the improvement in performance is gener-
ally less than a factor of two.

Are these differences between the two approaches
significant? The obvious way to answer this question is
to compare the performance of the two algorithms for
the same viewing conditions. Figure 14 shows heading
discrimination thresholds for our ideal discriminator, for
the least-squares estimator of Koenderink and van
Doorn (1987),* and for an ideal discriminator that used
the same noise distributions as Koenderink and van
Doorn’s least-squares algorithm. Our ideal observer’s
thresholds are indicated by the thick solid lines, the
least-squares algorithm’s by the squares, and the other
ideal discriminator’s by the crosses. Figure 14(A, B)
shows the models’ thresholds when the stimulus was a
3D cloud and Fig. 14(C, D) the thresholds when it was
a plane. Figure 14(A, C) plots results. for foveal viewing
and Fig. 14(B, D) for peripheral viewing. The two ideal
discriminators’ thresholds are virtually identical in the
fovea; they are quite similar in the periphery except at
the smallest heading eccentricities. where thresholds for
our discriminator are higher, The thresholds of the
Koenderink and van Doorn least-squares estimator are
two to three times higher than those of the ideal
discriminators because their algorithm does not weigh
the errors appropriately according to the error distri-
bution standard deviations and does not incorporate
information about the possible motions and depths.
Nonetheless, for the conditions of Crowell and Banks
(1993a) experiment, the least-squares algorithm exhibits
the heading eccentricity effect in much the same fashion
as the ideal discriminators.

If we model experiments in which the dot speeds are
slower, the algorithms behave less similarly. Figure
14(C, D) shows the discrimination thresholds of the
three algorithms for a hypothetical experiment in the
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stimulus is a plane at the same initial depth (1050 cm) as
the back of the 3D cloud in Crowell and Banks (1993a).
In this case, our ideal observer exhibits a smaller effect
of heading eccentricity (with foveal and peripheral view-
ing) and thresholds in the periphery are uniformly higher
(the threshold for our ideal observer for radial flow is 10
times higher in the periphery than in the fovea). Thus,
there are conditions in which the algorithms behave
quite differently. Because the noises in our algorithm
were derived from a broader range of experimental
conditions, its performance is valid for a broader range
of heading displays.

Applications and future directions

The ideal observer presented here allows us to quan-
tify how the informativeness of the optic flow field varies
with viewing conditions. This modeling tool can, there-
fore, be used to determine how the informativeness of
the stimulus varies with several properties of interest,
including the field of view, number of texture elements,
geometry of the scene, and much more. As stated earlier,
such a quantification allows one to measure human
performance in terms of efficiency (the ratio of
ideal/human threshold) and this in turn allows one to
uncover those aspects of performance that reveal the
properties of neural mechanisms and strategies human
observers employ in these tasks. At this point, appli-
cation of the ideal observer model is somewhat limited
because it can only be applied to the discrimination of
directions or speeds of observer translations and to flow
fields consisting of random dots. We have begun to
expand the model’s scope to incorporate rotational
components of observer motion (Crowell & Banks,
1994). In the future, it would be quite useful to include
other types of texture elements besides random dots (e.g.
Flach er al., 1992). In its current state, there are nonethe-
less several potentially useful applications of this model-
ing tool.

We showed in Figs 10 and 11 that one can calculate
the spatial distribution of heading discrimination infor-
mation for the set of stimuli used by Crowell and Banks
(1993a). For those stimuli, the distribution proved to be
rather simple. The discrimination information was great-
est near the focus of expansion (when it was visible) and
fell monotonically -with increasing distance from that
point. The information contained in vector directions
decreased most rapidly along an axis passing through the
two possible headings, whereas the information in vector
speeds decreased most rapidly along the orthogonal axis.
Naturally, the spatial distribution of heading infor-
mation will not always be so simple because it depends
on the direction of self-motion relative to the stimulus
(that is, the heading eccentricity), the scene geometry.
and more. An important direction for future work will
be to apply this modeling tool to the results of other
previous studies of heading perception and to real-life
situations. As an example of the former, consider the
studies on maintaining altitude in flight simulations by
using different types of texture (e.g. Flach er al., 1992).
Expanding the ideal observer model to allow the incor-
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poration of lines, one could determine whether the
superior performance of human observers when pre-
sented lines parallel to the forward motion is a conse-
quence of greater informativeness of such lines or the use
of more efficient mechanisms or strategies on the observ-
ers’ part. As an example of the latter, one could use our
approach to determine where in a pilot’s visual field the
most informative changes in flow would occur if the
aircraft’s heading deviated horizontally or vertically
from the desired flight path.

CONCLUSION

We developed an ideal observer for the discrimination
of heading from random-dot flow fields. It can be used
to quantify the discrimination information available for
any translation through any scene represented by dots.
Using this ideal observer, we showed that the spatial
distribution of discrimination information varies signifi-
cantly depending on the viewing situation, particularly
on the direction of simulated observer translation rela-
tive to the stimulus patch (the heading eccentricity). This
sort of analysis can be used in a wide variety of situations
including applied settings.

We compared human and ideal observer performance
in discriminating headings with different patterns of flow
presented on different parts of the retina. Efficiency was
reasonably constant for different flow patterns and quite
constant for different retinal eccentricities. This outcome
shows that most of the variation in the ability to estimate
heading from the flow patterns and retinal loci con-
sidered here is due to changes in the discrimination
information provided by the stimulus after measurement
by early stages of visual processing.
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APPENDIX

Single-dot Discrimination Experiments

McKec and Nakayama (1984) showed that base speed and retinal
eccentricity affect speed discrimination thresholds. They reported that
the Weber Fraction for speed discrimination is constant (5-10%) at
high speeds. but, as the base speed is decreased, there comes a point
at which the Weber Fraction begins to rise monotonically. This point
occurs at higher base speeds in the peripheral visual field. We also
know from the work of De Bruyn and Orban (1988) and Westheimer
and Wehrhahn (1994) that direction discrimination is poorer at slow
speeds. Taken together., these results suggest that measurement error
in the flow field is larger relative to the flow vector magnitude for lower
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speeds, particularly in the peripheral visual field. In the single-dot
experiment, the measurement error functions for speed and direction
of motion were mapped out using five retinal eccentricities and four
to six speeds.

Observers. Three observers participated in these experiments. JAC
was a 7-diopter myope, corrected to normal. with considerable experi-
ence in similar experimental tasks. TRC was emmetropic with some
experience in similar tasks. SME was a 2-diopter astigmat, corrected
to normal, with no prior experience in these tasks.

Stimuli. Experiments were run on an Apple Macintosh IIfx com-
puter with a [4-inch Apple color monitor. Stimuli were updated at the
66-Hz frame rate. The stimuli consisted of a single dot moving across
the CRT in each of two intervals. The dot was an illuminated pixel
subtending 1.8 by 1.8 min at the viewing distance of 70 cm. The dot’s
luminance was 7.7 c/deg/m* (measured when the screen was flooded):
this luminance was chosen to match the apparent brightness of the dots
used by Crowell and Banks (1993a). Background luminance was
0.0 c¢/deg/m*. The CRT provided the only light in the room. The base
direction of the dot's motion was always 45 deg up and to the right.*
The dot passed near the screen center at the mid-point of its trajectory.
but starting position and duration contained random components to
minimize positional cues. The random component of starting position
was uniformly distributed in X and Y with a full width of 20--50% of
the total trajectory length; the random component of duration was also
uniform with a width of [50-300msec (conditions with higher
thresholds had larger random components). Mean stimulus duration
was 500 msec.

Dot motion on a CRT is, of course, discrete rather than continuous,
but the motion appeared reasonably continuous at all but the slowest
speeds. Some of the foveal thresholds, however, were in fact limited by
the pixel size; those thresholds will be pointed out in the Results
section. The fact that a small number of the single-dot thresholds was
limited by the display’s propertics is not problematic for our analysis
because the same limitation existed in the heading experiments.

Procedure. Observers fixated a stationary LED that was positioned
to set the retinal eccentricity of the center of the stimulus patch to 0,
2, 5, 10, or 40 deg in the nasal retina (none of the stimuli fell on the
blind spot). Direction and speed discrimination thresholds were
measured at base speeds of 0.25, 1. 4, and 16 deg/sec (JAC and SME
also collected some data at lower speeds). Experimental runs were

*Pilot work revealed that discrimination thresholds varied by less than
10% as a function of base direction. The effects of interest here are
much larger, so we used one base direction only in the main
single-dot discrimination experiments.
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blocked by condition. A 2-temporal-interval, forced-choice psycho-
physical procedure was used to estimate discrimination threshold. On
a given trial, two 500 msec dot motions were presented, separated by
a 300 msec blank interval. Observers responded by pressing a key to
indicate whether the motion in the second interval appeared to be
faster (speed discrimination) or in a more clockwise direction (direction
discrimination) than the motion in the first interval. Feedback was
given after each response. The value of the direction or speed increment
was varied using a 2-down, l-up staircase, which converges to the 71%
correct point. The staircase was terminated after 12 reversals and
threshold was taken to be the mean of the last 10 reversals. Three to
five runs were conducted in each condition and the resulting thresholds
averaged.

Results

Single-dot direction and speed discrimination thresholds are plotted
in Figs 15 and 16, respectively. The figures display thresholds as a
function of base speed for the three observers; different symbols
represent retinal eccentricities of 0, 2, 5, 10, and 40 deg.

As expected, direction and speed discrimination thresholds were
roughly constant at high speeds and increased steeply at low speeds
(McKee & Nakayama, 1984; DeBruyn & Orban, 1988; Westheimer &
Wehrhahn, 1994). Also as expected, the speed below which thresholds
began to rise was higher at greater retinal eccentricities (McKee &
Nakayama, 1984). The speed discrimination thresholds were about
twice as high as McKee and Nakayama’s, but this disparity is
undoubtedly due to our use of very small (1.8 min square) dots; they
used lines several degrees long.

Presumably, direction and speed discrimination thresholds would
have been lower at some of the slowest base speeds if the stimuli
consisted of continuous motion. A few of the threshold values were
close to the limit imposed by the pixel size of the CRT. For example,
at the slowest base speed in the foveal speed discrimination condition
(0.1 deg/sec), the dot moved only two pixels over the course of a trial;
thus, the reported Weber fraction of ~ 50% corresponds to a difference
of one pixel between the two intervals. The thick solid curves in Figs 15
and 16 represent the thresholds that would have been measured had
the observers responded correctly whenever the dot’s trajectory varied
by a single pixel over the course of the two motion sequences. As
mentioned earlier, this display limitation does not adversely affect our
analysis because the same limitation applies to the stimuli in the
heading experiments.

We did not observe any large, systematic variations between observ-
ers. The largest range of thresholds in any given condition was roughly
a factor of two, and in most conditions, it was considerably smaller.
Therefore, we chose to use thresholds averaged across the three
observers to set the noises in the ideal observer.



